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Abstract  

Subgrid analysis of a transitional temporal mixing layer 
with evaporating  droplets  has been performed  using a di- 
rect numerical simulation (DNS) database. The DNS is 
for a Reynolds number (based on initial vorticity thick- 
ness) of 600, with  droplet mass loading of 0.2. The gas 
phase is computed using a Eulerian formulation, with La- 
grangian droplet tracking. Since Large Eddy Simulation 
(LES) of this flow requires the computation of unfiltered 
gas-phase variables at droplet locations from filtered gas- 
phase variables at the grid points,  it is proposed to model 
these by assuming the gas-phase variables to be given  by 
the filtered variables plus a correction based on  the filtered 
standard  deviation, which can be computed from the sub- 
grid scale (SGS) standard deviation. This model predicts 
the unfiltered variables at droplet locations better  than 
simply interpolating the filtered variables. Three  methods 
are investigated for modeling the SGS standard deviation: 
Smagorinsky, gradient  and scale-similarity. When prop 
erly calibrated, the gradient  and scale-similarity methods 
give results in excellent agreement with the DNS. 
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Droplet-laden turbulent flows occur in many problems of 
practical  interest, such as spray combustion and atomkc+ 
tion. The interaction of particles and turbulence is an inte- 
gral feature of such flows, and hence the topic of much re- 
search [2] [3] [5]  [12]. Large Eddy Simulation (LES),  in which 
the flow  field is spatially filtered, is emerging as a powerful 
tool in modelling unsteady  turbulent flows. It is expected 
to be more generally applicable than Reynolds-Averaged 
Navier Stokes (RANS), since the large scale structures 
are computed,  and the more universal small scale struc- 
tures  are modelled. LES is also less computationally in- 
tensive than direct numerical simulation ( DNS) in which 
all length scales are resolved, and has the additional ad- 
vantage of being able to accommodate considerably larger 
Reynolds numbers (Re). Whereas much research has been 
devoted to LES modeling for single phase incompressible 
flows, only moderate  attention has been  given to compress- 
ible shear flows [1][15],  with focus now turning two-phase 
flows [4] [ll] [ l G ] .  In addition  to modeling subgrid scale 
(SGS) terms for the gas phase, an LES of a droplet-laden 
flow would require modeling the unfiltered gas phase vari- 
ables at the  droplet locations. In simplistic models, the 

filtered variables are  substituted for the unfiltered vari- 
ables; however, this  assumption may be substantially in- 
accurate for droplets  with small Stokes numbers. With  an 
increasing body of  DNS computations [5]  [6] [7] [8] [13] [14], it 
is now possible to assess subgrid scale quantities at mod- 
erate Reynolds numbers, with good prospects for devising 
subgrid scale models. 

Recently,  Miller and Bellan [9][10]  have performed 
DNS  of droplet laden mixing layers. They use 'DNS' to 
refer to computations  in which all length scales of the 
gas-phase are resolved but  the effect of the gas  on each 
droplet is modeled using Stokes drag,  and  the effect of 
the droplets on the gas are modeled as source terms in 
the gas-phase equations. The present paper addresses the 
use of the DNS database of Miller and Bellan [9] to eval- 
uate subgrid scale closures. Specifically, we examine the 
largest Reynolds number (based on initial vorticity thick- 
ness, 6,,0, and  initial velocity difference, Avo) of 600, 
with mass loading of 0.2 (3x106drops) on a 300x332~  180 
(0.25mx0.22mx0.12m) grid, which they  denote as case 
TP600. 

Governing  Equations 

The governing equations for the gas phase density ( p ) ,  ve- 
locity (u,) ,  total energy ( E )  and vapor mass fraction (Yv) 
are given  by: 

a 2 + - [ p j ]  = SI at 

- pr- ""1 dXj = SI (4) 
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dt 
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Computation of the  drag force Fi, the heat flux Q and  the 
evaporation rate % require knowledge of the gas phase 
variables (u;, T ,  Yv, P )  at  the droplet locations, and in- 
volve validated relations [lo]. 

The source terms  are 

SI =-x [%] 

Srrr  = - [FiVi + Q + 9 ( $ V i v i  + cp,vTd + h t ) ]  
(15) 

where indicates appropriately weighted summations 
over droplets within a discretization volume associated 
with each  grid point. 

Filtered  Governing Equations 

The filtering operation is defined as: 

- 
V F )  = J ,  dJ(TM3 - TPT (16) 

where G is the filter function, with  the  property that i = 1, 
and V is the filtering volume. We use a cubic tophat  
filter, in  which V is a  cube of sides A, and G is simply 
a  volumeaverage. cor compressible flow, we use Favre 
filtering, defined as q5 = p$&, to simplify the  notation. 
After filtering, the gas phase equations become: 

- 

and it has been assumed that 
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- 
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i(pzL.U.v a s 3  - m u j )  = -p .  '3 .Z. 1 (29) 
- " U . C . .  = u.0.. a a3 I a3 (30) 

pYvT = pYv T (31) 

PYVTU, - pYvT% = 7 pYv T T  - TZ, 1 (32) 
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- p = p E  (33) 

(34) E = iiiiiii + Z;,T + htYv + irii 

The  terms  that need to  be modeled are  the subgrid stress 
rij, the subgrid heat flux 9, and  the subgrid species flux 

The droplet equations  remain as before, except that 
now the gas-phase variables (ui , T,  Yv,  P )  at  the droplet 10- 
cations are no  longer immediately available, and wiil need 
to be derived  from the filtered variables ( Z i ,  T ,  Yv, 7). 
Thus  the (unfiltered) gas-phase variables also need to  be 
modeled. 

- 
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Model for Instantaneous Variables 

The droplet model requires modeling gas phase variables 
at droplet locations. To guide the modeling, we will first 
consider the known DNS generic variable dJ and  its filtered 
form q, where the  bar denotes Favre filtering for ui and 
Yv and regular filtering for T and P .  The definition of the 
standard deviation is 

a=&q=4= (35) 

Thus  the relation between b, and 5 is 
$=5+ f a  (36) 

where  from the definition of a, f = f l .  The goal of the 
modeling is to compute, from the filtered flowfield, the 
form of f a  that provides a better approximation  to 4 than 
does f a  = 0. In  this formulation, f a  can  be viewed as a 
correction to $with sign f and  magnitude 0.  

It is tempting to assume that f randomly takes on 
values of -1 and 1. However, if the filtering operation is 
viewed as a volume average, a relation between b, and 3 
can be  derived as follows.  Consider the third-order Taylor 



oxlxlnsion o f  i l l  the filtering volume V of size A with 
ccntroid at, = (.c I, ,  , .czl,, q , , )  integrated over the volume: 

From the definition of the centroid S,(xi - x,,)dV = 0. 
If V is symmetric,  then 

- I A2 
b , = d , + v 2 4 L + 0 ( ~ 4 )  2 

where terms of 0 ( A 3 )  vanish due  to  the symmetry of the 
filtering volume. 

Thus f will generally be -sign (V”). From the 
available filtered quantities, we can  compute V2$ rather 
than V24; so to model f we assume that V’$ and V2$ 
have the same sign. To model o, we note that for the gas 
phase we will be modeling terms of the form $$ - 33, 
which are  the  subgrid scale fluctuations. Defining ~ S C S  as 
the SGS standard deviation, 

The relationship between o and USGS can be illuminated 
by considering 7: 

We note that a = u & ~  +$$ and  that 43 can be  written 
in  terms of the local correlation between 4 and 5 

- 

If we assume that R(4,q) = 1, then 

(45) 
Defining Ti = 0, and using i7 as a model for o, we 

arrive ut a model for 4 of the form 

b, = 3 - sign(V25)T (46) 

i.e. f = -siyn(V2?;), (T = Ti. To assess this model, we will 
use the “exact” Ti obtained by filtering the DNS  flowfield, 
and then turn our attention  to modeling it baed on the 
filtered flowfield. The proposed model  will  be computed 
at the grid points, and  then  interpolated to  the droplet 
locations. 

Figure 1 shows the probability density function(PDF) 
for (4 - $)/5 for case TP600 at the end of the simulation. 
These results were obtained using a cubic tophat (box) 
filter with filter width A = 4Ax. Notably, for all quantities 
there are peaks near 1, and for the velocity components 
there  are also peaks near -1, similar to  the  PDF of (4 - 
4)/o, which takes on values of fl .  
- 
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Figure 1: PDF of (4 -$)/a 

Figures 2 and 3 show the comparison between inter- 
polating the DNS  flowfield to  the droplet locations (the 
“exact” quantities)  and  interpolating the models to  the 
droplet locations. Results are presented in terms of av- 



(:rilgt'S o w r  tlro1)lctts within a given y-interval; this liver- 
i@lg  is c l m o t c t t l  by < <  > > .  First, using as give11  by 

* Equation 35, we compare the models  for f .  It is seen 
that f = 0 leatls to significant discrepancy between the 
exact and motlel interpolated variable. Any  model with 

* f with Incan 0 will not perform any better as the devirlr 
tions toward the  exact value  will  be just as likely as the 
deviations away from the exact values. This is seen in the 
case  where f is randomly taken to be -1 or +1, which per- 
forms slightly worse than f = 0 despite having the exact 
(T. Using f = -sign(V2;j;) gives signscant improvement 
in  view  of the two assumptions made i.e. f = -sign(V2d) 
and sign(V'4) = sign(V2$). For the  data shown in Fig- 
ures 2 and 3, this is true (86%, 86%, 86%, 85%, 86% and 
93%) of the time for u1, uz,u3, T,  Yv, and P respectively. 
When f l  is replaced by B (denoted [a] in the figures), with 
f = -sign(V'$), there is considerable improvement over 
f = 0, for all quantities except T ,  where all the models give 
similar results. For T ,  YV and P ,  f = -sign(V2s) can be 

replaced by f = 1 if the signed B = fi - F$ is used 

instead of the positive Ti = la - @I of Equation 

45. An alternative expression for f uses a scalesimilarity 
idea, i.e. f = sign(4 - 4) = sign($ - 7). This gives 
similar results to using f = -szgn(V2$) for all six vari- 
ables.  An analysis of the correlation R(4,q) of Equation 
44 showed that R = 1 for T and P,  0.97 < R < 1 for u1, u2 
and '113 and 0.7 < R < 1 for Yv. For ~ 1 , 2 1 2  and u3, the 
greatest deviation from 1 was in  the middle of the mixing 
layer.  For Yv, the greatest  deviation was at the droplet- 
laden/droplet-free interface. However,  even in this region, 
R = 1 led to the best prediction of YV at droplet locations 
compared to smaller values.  Most importantly, R = 1 
is the only value that provides the correct B N 0 in the 
laminar freestream. Finally, we note that  the error for the 
approximation of Equation 46 is determined by that of the 
velocity components, which  have the largest error of about 
1.5%. 

- 

Models for  Subgrid Cross-terms 

For LES in the gas-phase, models are required for the 
subgrid stresses rij = UT, - GiG'heat fluxes 0, = 
Tuj - FZj and species fluxes qj = YVU, - YvGj. For the 
droplet part, models are required for the subgrid variances 

Y ~ v  -?"?v and PP- P P. Since these two sets of terms 
are of the same form, it seems reasonable and consistent 
to use the same  type of model for both. We consider three 
models, Smagorinsky, Gradient,  and Scale-Similarity [15]. 

- 
( T ~ G S :  UTI - GIG,,  t i i z  - ~ 2 ~ 2 ,  ~ 3 ~ 3  - G3G3, TT - T T ,  - - " 
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Figure 2: Error in unfiltered variable model 4 = $ + f a  
interpolated to droplet locations 
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Figure 3: Error in unfiltered variable model @ = 3 + f a  
interpolated to  droplet locations 

with model constant CR and filter width A, and where the 
rate-of-strain tensor is defined as 

Although this is forms the basis for most SGS modeling, 
it  cannot be easily extended  to compute the subgrid vari- 
ances for T ,  P and Yv. 

Gradient S G S  Model 

(53) 

This model is easily extended to compute the subgrid mi- 
ances for any quantity @ as 

Theoretically, CcA2 is the moment of the filtering volume, 
IcA2 of Equation 40, as can  be seen by integrating the 
square of the Taylor expansion for #, Equation 38, over 
the filtering volume, but using filtered quantities  in the 
derivatives. Thus for a cubic tophat filter CG = & . This 
model has the advantage that  the derivatives are  already 
available from the computation of the resolved part. 

Scale-Similarity SGS Model 

This model involves refiltering the flow-field at a test filter 

Theoretically, CS should be 1. This model is easily ex- 
tended to compute the subgrid variances for any quantity 
@ a s  h " 

.;GS ( 4 )  = 3 - 33 = c s  (@ - $3) (58) 

Model  Coefficients 

The validation of the models involves comparing the values 
predicted by the models to those obtained from the DNS 
database.  Standard deviations from Equation 42 will be 
referred to as "exact". First,  the correlation between the 
"exact" and model standard deviations will be computed. 



VwixI)Iv 
0.4037 '1 I. , 

Correlation SIope=JCc 

0.9847  0.4087 717  

0.0855 
- 

113 

0.8727  0.3886 T 
0.9835 0.4112 

Yv 
0.9902  0.3980 P 
0.9806 0.4155 

1 Combined I 0.40 I 
Table 1: Gradient SGS Model A = 4Ax 

The correlations are computed by averaging  over  homoge- 
neous ( 5 1  - 2 3 )  planes 

R ( X ,  Y ;  x2) = < X Y >  
d Z F 3 2 7 - 7  (59) 

or  over the whole domain 

R ( X ,  Y )  = W I  m 
By definition R is between -1 and 1. Values near 

1 indicate strong positive correlation, values near -1 in- 
dicate strong negative correlation, whereas  values near 0 
indicate poor correlation. This allows  pointwise assess- 
ment of the correlations. Next, the relationship between 
the two variables (i.e. the model coefficient)  needs to be 
determined. The simplest is a constant-coefficient  model 
where CR,  CG, Cs are  the same for all flow variables over 
the whole (spatial,  temporal)  domain. In that case, the 
coefficient can  be  determined using a least-squares fit to 
Y = bX which leads to b = [ X Y ] / [ X X ] .  If X is the model 
standard deviation and Y is the "exact" standard devia- 
tion , then b is the  square  root of the model  coefficient. 
More sophisticated models  would  have the model coeffi- 
cients as functions of space and time. 

Results 

All three models  were evaluated for Reynolds  number of 
600 and  mass loading 0.2 (case TP600 of Miller and Bellan 
[9]) at  the end of the simulation, using cubic tophat  filters. 

Figure 4 shows the subgrid scale stresses predicted by 
the Smagorinsky model. It  can be seen that  there is little 
local correlation between the exact and predicted stresses. 
Thus, this model was not assessed further. 

Figures 5 and 6 show the plan&averaged SGS stan- 
dard deviations for u1, ~ 2 , 2 1 3  and T,  Yv,  P respectively. 
Deviations from both models  show  good correlations with 
the exact deviations, although the models tend  to under- 
predict the  temperature deviations. For these figures,  val- 
ues of Cc = 0.42 and Cs = 0.7g2 were  used. These values 
were obtained from linear fits of the SGS standard devia- 
tions, which produced the coefficients presented in Tables 
1 and 2. 

Figure 4: Subgrid stresses a)exact  b)Smagorinsky  c) cor- 
relation 
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Figure 5: Plane Averages of SGS Standard Deviations, 
Velocity Components 

c 

Figure 6: Plane Averages of SGS Standard Deviations, 
Temperature,  Vapor Mass Fraction, and  Pressure 
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0.9475 
0.9498 

0.8008  0.9498 
0.9143  0.8958 

Yv 

0.79 Conlbined 
0.9476 0.7350 P 
0.9181 0.7856 

Table 2: Scale-Similarity Model A = 4Ax; & = 8 4 2  

Conclusions 

An a priori subgrid analysis has been conducted for a tem- 
porally developing mixing layer with evaporating droplets. 
This analysis was performed on a DNS database for 
Reynolds number (based  on vorticity thickness) of 600 and 
mass loading of 0.2. Two models for the subgrid scale 
(SGS) standard deviations, the gradient and scale simi- 
larity models, where found to give  excellent results when 
the model constant was properly calibrated. A model to 
recover the unfiltered variables from the filtered variables 
was also examined. In  this model, the unfiltered variables 
are  taken to  be filtered variables plus a correction term 
which can be computed from the SGS standard deviations. 
Predictions for the unfiltered variables at  the droplet lo- 
cations were found to  be improved compared to simply 
interpolating the filtered variables. Future work  involves 
both  testing  these models on a DNS database for a higher 
mass loading and a posteriori testing of these models in an 
LES. 
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